Entropy-energy Inequalities and Improved Convergence Rates for Nonlinear Parabolic Equations

نویسندگان

  • JOSÉ A. CARRILLO
  • JEAN DOLBEAULT
  • IVAN GENTIL
  • ANSGAR JÜNGEL
چکیده

Abstract. In this paper, we prove new functional inequalities of Poincaré type on the one-dimensional torus S and explore their implications for the long-time asymptotics of periodic solutions of nonlinear singular or degenerate parabolic equations of second and fourth order. We generically prove a global algebraic decay of an entropy functional, faster than exponential for short times, and an asymptotically exponential convergence of positive solutions towards their average. The asymptotically exponential regime is valid for a larger range of parameters for all relevant cases of application: porous medium/fast diffusion, thin film and logarithmic fourth order nonlinear diffusion equations. The techniques are inspired by direct entropy-entropy production methods and based on appropriate Poincaré type inequalities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Entropy Dissipation Method for Spatially Inhomogeneous Reaction–diffusion Type Systems

We study the large–time asymptotics of reaction–diffusion type systems, which feature a monotone decaying entropy (Lyapunov, free energy) functional. We consider both bounded domains and confining potentials on the whole space for arbitrary space dimensions. Our aim is to derive quantitative expressions for (or estimates of) the rates of convergence towards an (entropy minimising) equilibrium s...

متن کامل

Diiusive Bgk Approximations for Nonlinear Multidimensional Parabolic Equations

We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diiusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution recently obtained by Carrillo. Examples of such BGK models are provided.

متن کامل

Rényi Entropy and Improved Equilibration Rates to Self-similarity for Nonlinear Diffusion Equations

We investigate the large-time asymptotics of nonlinear diffusion equations ut = ∆u p in dimension n ≥ 1, in the exponent interval p > n/(n+ 2), when the initial datum u0 is of bounded second moment. Precise rates of convergence to the Barenblatt profile in terms of the relative Rényi entropy are demonstrated for finite-mass solutions defined in the whole space when they are re-normalized at eac...

متن کامل

On Uniqueness and Existence of Entropy Solutions of Weakly Coupled Systems of Nonlinear Degenerate Parabolic Equations

We prove existence and uniqueness of entropy solutions for the Cauchy problem of weakly coupled systems of nonlinear degenerate parabolic equations. We prove existence of an entropy solution by demonstrating that the Engquist-Osher finite difference scheme is convergent and that any limit function satisfies the entropy condition. The convergence proof is based on deriving a series of a priori e...

متن کامل

Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods

This paper is the second part of the study. In Part I, self-similar solutions of a weighted fast diffusion equation (WFD) were related to optimal functions in a family of subcritical Caffarelli-Kohn-Nirenberg inequalities (CKN) applied to radially symmetric functions. For these inequalities, the linear instability (symmetry breaking) of the optimal radial solutions relies on the spectral proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005